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Abstract – The article describesthe classificationof simple
movementsusing a systembasedon Hidden Mark ov Mod-
els (HMM). Brisk extensionsand flexions of the index fin-
ger, and movementsof the proximal arm (shoulder) and
distal arm (finger) were classifiedusing scalpEEG signals.
The aim of our study wasto developa systemfor the classi-
fication of movementswhich show EEG changesat identi-
cal scalpelectrodesof onehemisphere. The classificationof
EEG patterns relatedto movementsof onehand is difficult
becausethe disentanglementof movementscanonly rely on
the temporal evolution of EEG changesat one recording
site. A largevariability of EEG waveforms requiresthe use
of the context information.

The classificationprocedure was optimized in all parts
to increasethe recognition score and it was extensively
tested on a set of EEG data. The average classification
score was 80%, std. deviation 9% for the classificationof
distal and proximal movements.

The classificationof extension/flexionreachedeven bet-
ter results(due to more accurate localization of the signal
sourceon the scalp).The classificationof movement-related
EEG data basedon HMM yieldedhigher recognitionscores
than previously reportedclassificationscoresbasedon arti-
ficial neural networks (NaN).
Keywords – Spectralanalysis,HiddenMarkov models,HTK,
EEGclassification,EEGsynchronization

I . INTRODUCTION

The aim of our work was to develop, analyze,optimize
andverify a HMM systemfor the classificationof character-
istic shapesof EEG signals. The key requirementbuilt into
theclassificationsystemwasto usechangesin signalparame-
tersratherthaninformationabouttheelectrodepositionon the
scalp.Successfulclassificationof movement-relatedEEGsig-
nals is a pre-requisitefor on-line classificationof movement-
relatedEEG datawhich canbe utilized in driving of external
devices,e.g.theBrain-ComputerInterface(see[1]).

Theclassificationof EEGsignalssharessimilarcharacteris-
ticswith speechclassification– e.g.theuseof thecontext infor-
mationcontainedin thesignal. Dueto smallersignalvariabil-
ity, speechclassificationis morestraightforwardthantheEEG
classification. EEG signalsalso show large inter-individual
variability precludingextrapolationof EEGclassificationfrom
onesubjectsto the whole sample. Herewe appliedthe clas-
sification methodsoriginally developedin the recognitionof
speechpatternsto the EEG signalsand thuswe wereable to
improvetheindividual recognitionscores.

Thefirst stepin theclassificationof movement-relatedEEG
datawasto chooseasuitableclassificationparadigma.Wehave

tried to fulfill thefollowing conditions:

1. theability to usecontext for recognition,

2. the possibility of finding out “what does the system
learn”,

3. thereductionof thenumberof arithmeticoperations.

Condition1 is essentialfor reachinga satisfactory recog-
nition score. The EEG signalsdisplay a context information
andpreviousstudypointedto theimportanceof thecontext in-
formationin EEG classification(see[2]). Condition2 highly
facilitatesdebuggingandtestingof thesystem.Thethird con-
dition is of technologicalandpracticalimportance.

Theseconditionsseemsto be satisfiedusingthe approach
basedon HMM ratherthanNaN becauseof thefollowing rea-
sons:

� it is difficult to obtainmappingusingNaN,

� NaN requiresubstantiallymorenumericoperationsdur-
ing thelearningphasethanHMM,

� HMM allow to modeltheshapesof EEGsignals,

� HMM allow a straightforward useof the context infor-
mation.

Theabove characteristicsof HMM give a reliablerecognition
of speechpatterns[3],[4]. The HMM has beenapplied re-
cently to recognitionof EEG patternsrelatedto left andright
handmovements[5]. In contrastto thestudy[5], HMM in our
studywas implementedto classifymovementsshowing EEG
changesat identicalscalpelectrodesof onehemisphere.There-
fore theclassificationof EEGpatternsrelatedto movementsof
onehandis moredifficult comparedto classificationof move-
mentsrelatedto two hands(left vs. right) becausethedisentan-
glementof movementscanonly rely on thetemporalevolution
of EEGchangesat onerecordingsite (or in theworstcase- at
oneelectrodeonly).

I I . PROPERTIES OF EEG SIGNAL

Prior to the classificationsystemis designed,the analysis
of EEGsignalcharacteristicshasto beperformed.

A. THE SELECTION OF ELECTRODE

SinceEEGchangesin both,timeandspace,theselectionof
appropriateEEGelectroderepresentingmovementis a crucial
point for asuccessfulclassificationof movements.

Sincemovementsarecontrolledprimarily by thecontralat-
eralsensorimotorcortex, thesuitableelectrodearethoseover-
lying the contralateralsensorimotorhandarea(electrodeC3).
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We have testedvariouselectrodesandcameto theconclusion,
asexpected,thattheselectionof electrodehasaseriousimpact
on therecognitionscore(see[6] for moredetails).

B. SPECTRAL ANALYSIS

The major differencesin EEG databetweentwo typesof
movementscanbe observed from the time courseof spectral
parameters.The changesof spectrumaccompanying move-
mentarelocalizedto the10-23Hz band.Theaccurateselection
of bandis an individual task. To minimize the faulty choice,
initially a broadband(0-40Hz) bandwith removedDC com-
ponentfor classification(“baseband”)wasused.

Onecanseetwo characteristicphenomenain the spectro-
gramaroundthetime of a movement(see[7]):

synchronization : post-movementriseof spectralpower. Syn-
chronizationis usuallygreaterin proximal thanin distal
movements(seeFig. 2 andFig. 1 – comparethecurvep
with curved in theinterval III).

desynchronization : decreaseof power aroundthe time of
movementonset(seeinterval II – Fig. 1). Desynchro-
nizationis strongerin distalthanin proximalmovements.

Figure1 illustratesanexampleof thetime developmentof
the averagemagnitudespectrumof both movementsfor one
subjectandelectrode.Thespectrumis normalized,that is the
amplitudeof eachspectralline is basedto the averagemagni-
tudeof the samespectralline computedfrom the segments1
- 15. To be moreprecise: let

����
	 �� is the spectralline from
segment � (frequency � Hz) of motion � , thenthe appropriate
value � �� (depictedon thefigure)is computedas

� ���� �
������ ��� ����
	 ������� �

������ ��� �
��� !� � ��� 	 ���#" (1)

C. SELECTION OF PARAMETRIZATION

Theresultsof spectralanalysisrevealedthattheuseof lin-
earspectrumis themostappropriatefor HMM. Otherparame-
ters(e.g. cepstralcoefficientsor log-spectra)werealsotested
but theseparameterswerefoundto belesssuitablefor theEEG
classification.

Thepresentsystemusesastheinputparametersthespectral
linesof linearmagnitudespectrumtakenfrom band1 - 40 Hz
without normalizationusedfor Fig. 1. The reasonis that in
the real applicationsit is not possibleto recognizethe resting
periodsbetweensubsequentmovements.Ourtestsalsoshowed
that a successfulclassificationis not sensitive to the selection
of particularspectrallines. It is only importantto detectaclear
synchronizationanddesynchronizationin the selectedbands.
Higherfrequency bands(above50Hz) arenotusedsincethese
bandsshowedpoorsignal-to-noiseratio.

I I I . PARAMETERS OF HMM BASED MODELS
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Figure1: Person4, electrode25, 10-23Hz band. Horizontal
line marksthe momentof movement,desynchronizationcan
be found roundthe movement,after themovementis obvious
synchronization.Theshapeof proximalmovementis “p”, “d”
is for distalone.

Since we classify two types of movements,two models
shouldbeused– onefor thedistal,andtheotherfor theprox-
imal movement. The EEG epochscorrespondingto the real-
izationsof movementsarestoredin separatefiles. This way is
very similar to isolatedwordsrecognitionproblem. The pro-
posedgrammarof thesystemis $ ��%#&�')(+*-, �-.0/01 �324')( "During theselectionof thetypeof model,thetime courses
of EEG synchronizationanddesynchronizationshown in Fig.
1 arerelevant. Thewholetime evolution of theEEGspectrum
canbedivided into four phasesasdepictedin Fig. 1. PhaseI
andIV aretherestingperiodsprecedingandfollowing amove-
ment,respectively. PhaseII is thedesynchronization,III is the
synchronization.Phasesfollow in the order I – II – III – IV,
noneof themcanbeskipped.Also thissituationis verysimilar
to speechrecognition.As thebestit appearsto usethemodel
of type “left-right without skips”, 4 emitting states.It is sup-
posedthat eachstate1–4 is trainedto the averagemagnitude
spectrumcorrespondingto phasesI – IV.

In Fig. 3 the meanvaluesof output distributions of the
model statesare shown. In states2 and3, a decreasingand
subsequentincreasingof spectralpower(in theband10-20Hz)
is evident.

The resultsshowed also a large variability of individual
spectralchanges.The standarddeviation of spectrallines is
typically higherthantheir meanvalues.Theaverageshapesof
spectralchangesdepictedin Figs. 1 and3 fit to theprevailing
numberof subjects([6]).

IV. DETAILS OF PARAMETRIZATION

In the phaseof parametrization,the following parameters
shouldbe optimized: segmentationlength,segmentationstep,
weightingof signalsegmentby anappropriateweightingfunc-
tion, the type of stochasticdistribution of spectrallines. For
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Figure2: Person4, electrode25, the time developmentof the
magnitudespectrum.Depictedis thebaseband.Horizontalline
marksthe time of movement,you canseedesynchronization
roundthemovementandsynchronizationafter themovement.
Horizontallinesemphasize10-23Hzband.

eachparameter, anoptimalvaluewhich maximizestheclassi-
ficationscorecanbefound. Now we will give anoverview of
theseoptimalparameters.

A. SIGNAL SEGMENTATION

For a reliableEEG signalclassification,it is necessaryto
find a compromisebetweenthefrequency andtime resolution.
The unsuitableselectionof oneof theseparametersresultsin
decreasingof therecognitionscore.

Available frequency and time resolution is determined
by the segment length. Time resolutionis necessaryfor the
properrecognizingof statesI – IV. Low frequency resolution
decreasesthe recognitionscorebecauseindividual statesare
not recognizeddueto big spectralbias. The optimal segment
lengthwasfoundto be1 s thatcorrespondsto 512samplesfor
samplingfrequency 576 �98;:;: Hz.

Thespectralwindow is shiftedthroughtheEEGepochsin
shortintervals,thuswith alargetemporaloverlap.In ourstudy,
theoverlapof 800ms(400samples)gave thebestrecognition
scores. Thus, the resultingfrequency resolutionis 1 Hz and
the time resolution(window shift) is 200 ms. Theseresults
correspondto theresultsgivenin [7].

B. WEIGHTING OF SPECTRUM

The influenceof spectralleakageon the recognitionscore
wasfoundto benegligible (see[6]).

C. SPECTRAL LINES DISTRIBUTION

Theproposedsystemworkswith thesignalswith normally
distributed parameters.However, the amplitudesof spectral
lines usually show a logarithmic-normaldistribution. Using

the < � test,we testedthe distribution of our spectralparame-
ters.Theresultsshowed(see[6]), thatthedistribution of mag-
nitudesof spectrallinescanbewell approximatedby boththe
normal and logarithmic-normaldistributions. We performed
severalexperimentswith theconversionof thespectralparame-
tersfrom thelogarithmic-normaldistributionto thenormaldis-
tribution. However, the resultswereequivalentfor both types
of distributions.

D. MODEL PARAMETERS ESTIMATION

Theinfluenceof thenumberof Baum-Welchre-estimations
[8] on the classificationscorewasalsostudied. The optimal
numberof iterationsis strongly influencedby the variability
of EEG dataand,of course,by the numberof data. The best
resultsfor the setof dataused(seesection”Experimentsand
results”) were achieved with ten Baum-Welch iterations. A
smallernumberof iterationshave not trainedthe modelssuf-
ficiently, anda largenumberof iterations(greaterthan10) re-
sultedin “over-trained”models.

E. THE PROCESS OF EVALUATING THE RESULTS

Classificationis acomplicatedstatisticprocess.Theresults
of experimentsareat mostinfluencedby

1. signalparametersandusedparametrization,

2. the division of realizationsbetweentestingandtraining
set.

Thetestingandtrainingsetsrepresentdisjoint classes.There-
fore,it is essentialto repeateachexperimentwith differentpar-
titioning of realizationsbetweenboth setsandto evaluatethe
recognitionscoresstatistically.

A system for automatic partitioning the realizations
betweentraining and testing setswas implemented. Every
experiment was repeated 10-times and the appropriate
statisticalcriteriawereevaluated.

V. EXPERIMENTS AND RESULTS

Parametersof the systemwere optimized and the whole
systemwasextensively testedin numerousexperiments.Here
we presentthetypical parametersof thesystemandtheresults
of classification(moredetailscanbefoundin [6]).

Parameterization: segment of 512 sampleslength, overlap
400samples,datarecordedfrom electrodeC3,7 experi-
mentalpersons,everyvectorcontains40parameters(4 –
44Hz,step1 Hz), 1 stream,nonedifferentialparameters.

Training: modelstrainedon onehalf of datafrom a relevant
subject, the secondhalf was used for evaluating the
recognitionscore. Usedleft-right modelwithout skips,
four emitting states.10 stepsof initialization, 10 steps
of Baum-Welchreestimation.
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Figure3: Meansof stateoutputdistributionof model.You can
comparethemwith thecorrespondingphaseson Fig. 1 – state
1 correspondswith phaseI, state2 with phaseII, 3 with III a 4
with IV.

Classification: classificationwasdoneby meansof Viterbi al-
gorithm. Eachexperimentwasten timesrepeatedwith
its own division of realizationbetweentrainingandtest-
ing sets,theresultantclassificationscorewastheaverage
of thescoresfrom eachrepetition.Also thestandardde-
viationsfor classificationscoreswereevaluated.

Results: the averageclassificationscorefor distal movement
(extension-flexion of right index figner)- 80%,for prox-
imal movement(right shoulder)- 76%. In bothcasesthe
standarddeviationsof recognitionscoreareabout9%.

VI . CONCLUSIONS

Theclassificationof movement-relatedEEGdatabasedon
the HMM is a feasiblealternative to NaN. The problemof an
optimalelectrodeusedfor classificationis a problemcommon
to theHMM andNaNapproaches.Anotherproblemis thelarge
intra- andinter-individual variability of EEG data. Therefore,
theclassificationof modelscannotbestraightforwardlygener-
alizedto thewholepopulationof subjects.Thesuggestedsys-
tem is ableto recognizeonly the movement-relatedEEGdata
which were usedfor training. The low capacityof the EEG
modelsis the reasonthat no generalizationof modelscanbe
achieved. In this point theusedapproachdiffersfrom theclas-
sificationof speechpatternsfor which a “speaker independent
classification”is possible.Theusingof theEEGclassification
modelsfor moredifferentmovementsand for more thanone
subjectisataskfor thefuture.Thenext studywill beperformed
onalargerdatabaseof EEGsignalsandfor moredifferenttypes
of movements.
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